Mobile Soft Switch Traffic Prediction using Polynomial Neural Networks
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Time Series Prediction Using Evolving Polynomial Neural Networks
i DECLARATION No portion of the work referred to in this dissertation has been submitted in support of an application for another degree or qualification of this or any other university or other institution of learning. ii ABSTRACT Real world problems are described by non-linear and chaotic processes which makes them hard to model and predict. The aim of this dissertation is to determine the st...
متن کاملTime Series Prediction of Telephone Traffic Occupancy using Neural Networks
Various techniques, including feed-forward neural networks, are applied to the time series prediction problem. The forecasting of occupancy on a telephone trunk group is taken as a case study. The relative performances of the techniques are reported. Theoretical justifications are provided for the results.
متن کاملIdentification and Prediction of Internet Traffic Using Artificial Neural Networks
This paper presents the development of an artificial neural network (ANN) model based on the multi-layer perceptron (MLP) for analyzing internet traffic data over IP networks. We applied the ANN to analyze a time series of measured data for network response evaluation. For this reason, we used the input and output data of an internet traffic over IP networks to identify the ANN model, and we st...
متن کاملTraffic Congestion Prediction using Soft computing Technique
-Network traffic forecasting has many important role to play in the domain of network traffic congestion control, its management and network traffic engineering. Characterizing the traffic and modeling are necessary for efficient functioning of the network. It is very vital for any model to depict self similarity, heavy tailed distribution and long range dependence (LRD). Thus modeling of time ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Engineering Research and Science
سال: 2018
ISSN: 2506-8016
DOI: 10.24018/ejers.2018.3.7.775